Đề thi toán lớp 9 học kì 1 trắc nghiệm năm 2024

Cơ quan chủ quản: Công ty Cổ phần Đầu tư và Dịch vụ Giáo dục MST: 0102183602 do Sở kế hoạch và Đầu tư thành phố Hà Nội cấp ngày 13 tháng 03 năm 2007 Địa chỉ: - Văn phòng Hà Nội: Tầng 4, Tòa nhà 25T2, Đường Nguyễn Thị Thập, Phường Trung Hoà, Quận Cầu Giấy, Hà Nội. - Văn phòng TP.HCM: 13M đường số 14 khu đô thị Miếu Nổi, Phường 3, Quận Bình Thạnh, TP. Hồ Chí Minh Hotline: 19006933 – Email: [email protected] Chịu trách nhiệm nội dung: Phạm Giang Linh

Giấy phép cung cấp dịch vụ mạng xã hội trực tuyến số 597/GP-BTTTT Bộ Thông tin và Truyền thông cấp ngày 30/12/2016.

Thầy cô giáo và các em học sinh có nhu cầu tải các tài liệu dưới dạng định dạng word có thể liên hệ đăng kí thành viên Vip của Website: tailieumontoan.com với giá 500 nghìn thời hạn tải trong vòng 6 tháng hoặc 800 nghìn trong thời hạn tải 1 năm. Chi tiết các thức thực hiện liên hệ qua số điện thoại (zalo ): 0393.732.038

Điện thoại: 039.373.2038 (zalo web cũng số này, các bạn có thể kết bạn, mình sẽ giúp đỡ)

Kênh Youtube: https://bitly.com.vn/7tq8dm

Email: [email protected]

Group Tài liệu toán đặc sắc: https://bit.ly/2MtVGKW

Page Tài liệu toán học: https://bit.ly/2VbEOwC

Website: http://tailieumontoan.com

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

  1. TRẮC NGHIỆM (1 điểm)Trả lời câu hỏi bằng cách viết lại chữ cái trước đáp án đúng vào bài làm:

Câu 1 : Nếu x thỏa mãn điều kiện \(\sqrt {3 + \sqrt x } = 2\) thì x nhận giá trị là:

  1. 0 B. 4
  1. 5 D. 1

Câu 2 : Điều kiện để hàm số bậc nhất \(y = \left( {1 - m} \right)x + m\,\,\left( {m \ne 1} \right)\)là hàm số nghịch biến là:

  1. \(m > 1\) B. \(m \ge 1\)
  1. \(m \le 1\) D. \(m < 1\)

Câu 3 : Cho tam giác MNP vuông tại M, đường cao MH. Chọn hệ thức sai:

  1. \(M{H^2} = HN.HP\)
  1. \(M{P^2} = NH.HP\)
  1. \(MH.NP = MN.MP\)
  1. \(\dfrac{1}{{M{N^2}}} + \dfrac{1}{{M{P^2}}} = \dfrac{1}{{M{H^2}}}\)

Câu 4 : Cho hai đường tròn \(\left( {I;7cm} \right)\)và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là:

  1. Tiếp xúc trong
  1. Tiếp xúc ngoài
  1. Cắt nhau
  1. Đựng nhau

II. TỰ LUẬN (9 điểm)

Câu 1 (1 điểm):Thực hiện phép tính: a) \(3\sqrt {\dfrac{1}{3}} + 4\sqrt {12} - 5\sqrt {27} \) b) \(\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 - 1}}\)

Câu 2 (2 điểm): Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 2}} + \dfrac{{\sqrt x }}{{\sqrt x + 2}} - \dfrac{{x - 2\sqrt x }}{{x - 4}}\) và \(Q = \dfrac{{\sqrt x + 2}}{{\sqrt x - 2}}\,\,\left( {x \ge 0;x \ne 4} \right)\)

  1. Rút gọn P
  1. Tìm x sao cho \(P = 2\)
  1. Biết \(M = P:Q\). Tìm giá trị của x để \({M^2} < \dfrac{1}{4}\)

Câu 3 (2 điểm):Cho hàm số \(y = \left( {m - 4} \right)x + 4\) có đồ thị là đường thẳng \(\left( d \right)\)\(\left( {m \ne 4} \right)\).

  1. Tìm m để đồ thị hàm số đi qua \(A\left( {1;6} \right)\)
  1. Vẽ đồ thị hàm số với m tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút).
  1. Tìm m để đường thẳng \(\left( d \right)\) song song với đường thẳng\(\left( {{d_1}} \right):y = \left( {m - {m^2}} \right)x + m + 2\)

Câu 4 (3,5 điểm):Cho đường tròn \(\left( {O;R} \right)\) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn \(\left( O \right)\) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M.

  1. Cho biết bán kính \(R = 5cm,\,\,OM = 3cm\). Tính độ dài dây EH.
  1. Chứng minh AH là tiếp tuyến của đường tròn\(\left( O \right)\).
  1. Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn \(\left( O \right)\) (F là tiếp điểm). Chứng minh 3 điểm E, O, F thẳng hàng và \(BF.AE = {R^2}\).
  1. Trên tia HB lấy điểm I (\(I \ne B\)), qua I vẽ tiếp tuyến thứ hai với đường tròn \(\left( O \right)\) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắtAE tại Q. Chứng minh \(AE = DQ\).

Câu 5 (0,5 điểm):Cho x,y là các số thực dương thỏa mãn \(x + y \le 1\).

Tìm giá trị nhỏ nhất của biểu thức \(P = \left( {\dfrac{1}{x} + \dfrac{1}{y}} \right).\sqrt {1 + {x^2}{y^2}} \).

LG trắc nghiệm

Lời giải chi tiết:

  1. TRẮC NGHIỆM

LG bài 1

Lời giải chi tiết:

  1. \(3\sqrt {\dfrac{1}{3}} + 4\sqrt {12} - 5\sqrt {27} = \sqrt 3 + 8\sqrt 3 - 15\sqrt 3 = - 6\sqrt 3 \)
  1. \(\dfrac{{3 + 2\sqrt 3 }}{{\sqrt 3 }} - \dfrac{2}{{\sqrt 3 - 1}} = \dfrac{{\left( {\sqrt 3 + 2} \right)\sqrt 3 }}{{\sqrt 3 }} - \dfrac{{2\left( {\sqrt 3 + 1} \right)}}{{3 - 1}} = \sqrt 3 + 2 - \sqrt 3 - 1 = 1\)

LG bài 2

Lời giải chi tiết:

Cho biểu thức \(P = \dfrac{{\sqrt x }}{{\sqrt x - 2}} + \dfrac{{\sqrt x }}{{\sqrt x + 2}} - \dfrac{{x - 2\sqrt x }}{{x - 4}}\) và \(Q = \dfrac{{\sqrt x + 2}}{{\sqrt x - 2}}\,\,\left( {x \ge 0;x \ne 4} \right)\)

  1. Rút gọn P

\(\begin{array}{l}P = \dfrac{{\sqrt x }}{{\sqrt x - 2}} + \dfrac{{\sqrt x }}{{\sqrt x + 2}} - \dfrac{{x - 2\sqrt x }}{{x - 4}}\\\;\;\; = \dfrac{{\sqrt x }}{{\sqrt x - 2}} + \dfrac{{\sqrt x }}{{\sqrt x + 2}} - \dfrac{{\sqrt x \left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\\;\; = \dfrac{{\sqrt x }}{{\sqrt x - 2}} + \dfrac{{\sqrt x }}{{\sqrt x + 2}} - \dfrac{{\sqrt x }}{{\sqrt x + 2}} = \dfrac{{\sqrt x }}{{\sqrt x - 2}}\end{array}\)

  1. Tìm x sao cho \(P = 2\)

\(P = 2 \Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x - 2}} = 2 \)

\(\Leftrightarrow \sqrt x = 2\sqrt x - 4 \)

\(\Leftrightarrow \sqrt x = 4 \Leftrightarrow x = 16\)

  1. Biết \(M = P:Q\). Tìm giá trị của x để \({M^2} < \dfrac{1}{4}\)

\(M = P:Q = \dfrac{{\sqrt x }}{{\sqrt x - 2}}.\dfrac{{\sqrt x - 2}}{{\sqrt x + 2}} = \dfrac{{\sqrt x }}{{\sqrt x + 2}}\)

\({M^2} < \dfrac{1}{4} \Leftrightarrow {\left( {\dfrac{{\sqrt x }}{{\sqrt x + 2}}} \right)^2} < \dfrac{1}{4} \)

\(\Leftrightarrow \dfrac{{\sqrt x }}{{\sqrt x + 2}} < \dfrac{1}{2}\)

\(\Leftrightarrow 2\sqrt x < \sqrt x + 2 \Leftrightarrow \sqrt x < 2 \Leftrightarrow x < 4\)

Kết hợp điều kiện đầu bài \( \Rightarrow 0 \le x < 4\)

LG bài 3

Lời giải chi tiết:

Cho hàm số \(y = \left( {m - 4} \right)x + 4\) có đồ thị là đường thẳng \(\left( d \right)\)\(\left( {m \ne 4} \right)\).

  1. Tìm m để đồ thị hàm số đi qua \(A\left( {1;6} \right)\)

\(A\left( {1;\;6} \right)\) thuộc đường thẳng \(\left( d \right).\) Ta thay \(x = 1;\,\,y = 6\) vào hàm số \(y = \left( {m - 4} \right)x + 4\) ta được \(6 = \left( {m - 4} \right).1 + 4 \Leftrightarrow m = 6\;\;\left( {tm} \right)\)

Vậy với\(m = 6\) thì đồ thị hàm số đi qua \(A\left( {1;6} \right)\)

  1. Vẽ đồ thị hàm số với m tìm được ở câu a. Tính góc tạo bởi đồ thị hàm số vừa vẽ với trục Ox (làm tròn đến phút).

Với \(m = 6\) thì \(y = 2x + 4\)

Ta có bảng giá trị:

x

0

-2

\(y = 2x + 4\)

4

0

Đề thi toán lớp 9 học kì 1 trắc nghiệm năm 2024

Đường thẳng \(y = 2x + 4\) đi qua hai điểm \(\left( {0;4} \right)\) và \(\left( { - 2;0} \right)\)

Gọi \(\alpha \) là góc tạo bởi đồ thị hàm số vừa vẽ với trụcOx \( \Rightarrow \tan \alpha = 2 \Rightarrow \alpha \approx {63^o}{26'}\)

  1. Tìm m để đường thẳng \(\left( d \right)\) song song với đường thẳng \(\left( {{d_1}} \right):y = \left( {m - {m^2}} \right)x + m + 2\)

\(\left( d \right)//\left( {{d_1}} \right) \Leftrightarrow \left\{ \begin{array}{l}m - {m^2} = m - 4\\m + 2 \ne 4\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\\m \ne 2\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 2\\m = - 2\end{array} \right.\\m \ne 2\end{array} \right. \Leftrightarrow m = - 2\;\;\left( {tm} \right)\)

Vậy với \(m = - 2\) thỏa mãn yêu cầu đề bài.

LG bài 4

Lời giải chi tiết:

Cho đường tròn \(\left( {O;R} \right)\) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn \(\left( O \right)\) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M.

Đề thi toán lớp 9 học kì 1 trắc nghiệm năm 2024

  1. Cho biết bán kính \(R = 5cm,\,\,OM = 3cm\). Tính độ dài dây EH.

Theo đề bài ta có: \(EH \bot OA\) tại M nên M là trung điểm của EH hay \(EH = 2EM\)(định lý mối liên hệ giwuax đường kính và dây cung)

Áp dụng định lý Pi-ta-go cho tam giác vuông OME có:

\(EM = \sqrt {O{E^2} - O{M^2}} = \sqrt {{5^2} - {3^2}} = 4\)

Vậy \(EH = 2EM = 8\,\,(cm)\)

  1. Chứng minh AH là tiếp tuyến của đường tròn \(\left( O \right)\).

Ta có \(\left\{ \begin{array}{l}OA \bot EH\\ME = MH\end{array} \right. \Rightarrow \)OA là đường trung trực của EH\( \Rightarrow AE = AH\)

Xét hai tam giác OEA và tam giác OHA có:

\(OE = OH\,\,( = R);\,\,\,AE = AH;\,\,OA\)chung

\( \Rightarrow \Delta OEA = \Delta OHA\)(c.c.c) \( \Rightarrow \angle OHA = \angle OEA = {90^o}\) hay \(AH \bot OH\)

Vậy AH là tiếp tuyến của \(\left( O \right)\) (đpcm).

  1. Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn \(\left( O \right)\) (F là tiếp điểm). Chứng minh 3 điểm E, O, F thẳng hàng và \(BF.AE = {R^2}\).

Có \(AH \bot OH\;\;\left( {cmt} \right)\) hay Blà giao của hai tiếp tuyến BH; BF

\( \Rightarrow \angle BOF = \angle BOH\), lại có \(\angle EOA = \angle HOA\)

\( \Rightarrow \angle EOA + \angle AOB + \angle BOF = 2\left( {\angle AOH + \angle BOH} \right) = 2\angle AOB = {180^o}\)

\( \Rightarrow \)E, O, F thẳng hàng. (đpcm)

Có \(\angle EOA + \angle BOF = {180^o} - \angle AOB = {90^o} \Rightarrow \angle OAE = \angle BOF\) (cùng phụ \(\angle AOE\))

Xét \(\Delta AOE\) và \(\Delta OBF\)có: \(\angle OAE = \angle BOF\); \(\angle AEO = \angle BFO = {90^o}\)

\( \Rightarrow \dfrac{{AE}}{{OF}} = \dfrac{{OE}}{{BF}} \Rightarrow AE.BF = OE.OF = {R^2}\,\,\,\,\,\left( 1 \right)\)

  1. Trên tia HB lấy điểm I (\(I \ne B\)), qua I vẽ tiếp tuyến thứ hai với đường tròn \(\left( O \right)\) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh \(AE = DQ\).

Có \(BF//AQ\) (do cùng vuông góc với EF) \( \Rightarrow \dfrac{{BF}}{{CF}} = \dfrac{{AQ}}{{DQ}}\)(định lý Talet) (*)

Dễ dàng chứng minh \(\Delta COD\) vuông tại O. Gọi K là tiếp điểm của tiếp tuyến thứ 2 qua I với \(\left( O \right)\)

Áp dụng hệ thức lượng trong tam giác vuông COD đường cao DK ta có: \(O{K^2} = DK.CK\)

Mà DE, DK là các tiếp tuyến của \(\left( O \right)\)cắt nhau tại D nên \(DE = DK\)

Tương tự \(CK = CF \Rightarrow O{K^2} = CF.DE \Leftrightarrow CF.DE = {R^2}\,\,\,\,\,\left( 2 \right)\)

Từ \(\left( 1 \right)\)và \(\left( 2 \right)\) suy ra: \(CF.DE = AE.BF \Leftrightarrow \dfrac{{BF}}{{CF}} = \dfrac{{DE}}{{AE}}\) (**)

Từ (*) và (**) suy ra: \(\dfrac{{AQ}}{{DQ}} = \dfrac{{DE}}{{AE}} \Leftrightarrow \dfrac{{AQ}}{{AQ - DQ}} = \dfrac{{DE}}{{DE - AE}} \Leftrightarrow \dfrac{{AQ}}{{AD}} = \dfrac{{DE}}{{AD}} \Leftrightarrow AQ = DE\)

Câu 5:

Cho x,y là các số thực dương thỏa mãn \(x + y \le 1\).

Tìm giá trị nhỏ nhất của biểu thức \(P = \left( {\dfrac{1}{x} + \dfrac{1}{y}} \right).\sqrt {1 + {x^2}{y^2}} \).

Có x, y là các số thực dương \( \Rightarrow \dfrac{1}{x};\dfrac{1}{y}\) là các số thực dương

Áp dụng bất đẳng thức Cô-si ta được : \(\dfrac{1}{x} + \dfrac{1}{y} \ge 2\sqrt {\dfrac{1}{x}.\dfrac{1}{y}} = \dfrac{2}{{\sqrt {xy} }}\)

Vậy \(P \ge \dfrac{2}{{\sqrt {xy} }}.\sqrt {1 + {x^2}{y^2}} = 2\sqrt {\dfrac{1}{{xy}} + xy} \)

Ta có : \(1 \ge x + y \ge 2\sqrt {xy} \)(do x, y là hai số thực dương)\( \Rightarrow xy \le \dfrac{1}{4}\)

\(\dfrac{1}{{xy}} + xy = \dfrac{1}{{16xy}} + xy + \dfrac{{15}}{{16}}.\dfrac{1}{{xy}} \ge 2\sqrt {\dfrac{1}{{16xy}}.xy} + \dfrac{{15}}{{16}}\dfrac{1}{{\dfrac{1}{4}}} = 2.\dfrac{1}{4} + \dfrac{{15}}{4} = \dfrac{{17}}{4}\)

\( \Rightarrow P \ge 2\sqrt {\dfrac{{17}}{4}} = \sqrt {17} \). Dấu ‘=’ xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x = y\\x + y = 1\\xy = \dfrac{1}{4}\end{array} \right. \Leftrightarrow x = y = \dfrac{1}{2}\)