Điều kiện để phương trình bậc 2 có nghiệm

Từ định lí về dấu tam thức bậc hai chúng ta có thể giải được các phương trình, bất phương trình tích, phương trình chứa căn, giải bất phương trình chứa căn. Đồng thời, từ đó có thể suy ra cách giải bài toán tìm điều kiện của tham số để tam thức bậc 2 (bất phương trình bậc hai) luôn dương, luôn âm với mọi \(x\) thuộc \(\mathbb{R}\), tìm điều kiện để bất phương trình nghiệm đúng với mọi số thực \(x\), tìm điều kiện để bất phương trình vô nghiệm… Đây là một dạng toán quan trọng, xuyên suốt chương trình Đại số và Giải tích ở cấp THPT.

Nếu bài viết hữu ích, bạn có thể ủng hộ chúng tôi bằng cách tặng tôi 1 cốc cafe vào số tài khoản Agribank 3205215033513.  Xin cảm ơn!

Điều kiện để phương trình bậc 2 có nghiệm

Để hiểu về các dạng toán tìm điều kiện để phương trình luôn đúng, vô nghiệm… chúng ta cần thành thạo các dạng bài Lý thuyết và bài tập dấu tam thức bậc hai.

✅Xem thêm ĐỀ CƯƠNG HỌC KÌ 2 TOÁN 10 

1. Tìm điều kiện để tam thức bậc hai luôn dương, luôn âm

Bài toán 1. Cho tam thức bậc hai \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) >0\) với mọi \( x \) thuộc \( \mathbb{R}\).

Để giải quyết bài toán trên, chúng ta cần xét hai trường hợp:

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \(f(x)\) là một tam thức bậc hai, nên \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) khi và chỉ khi \[\begin{cases} a>0\\ \Delta <0

    \end{cases}\]

Tương tự, chúng ta có các bài toán sau:

Bài toán 2. Cho \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) <0\) với mọi \( x \) thuộc \( \mathbb{R} \).

Cần xét hai trường hợp:

  • Kiểm tra khi \( a=0 \).
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases} a<0\\ \Delta <0

    \end{cases}\]

Bài toán 3. Cho \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) \ge 0\) với mọi \( x \) thuộc \( \mathbb{R} \).

Xét hai trường hợp:

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases} a>0\\ \Delta \le 0

    \end{cases}\]

Bài toán 4. Cho hàm số \( f(x)=ax^2 +bx+c \), tìm điều kiện của tham số \(m\) để \( f(x) \le 0\) với mọi \( x \) thuộc \( \mathbb{R} \).

Để giải quyết bài toán trên, chúng ta cần xét hai trường hợp:

  • Khi \( a=0 \), ta kiểm tra xem lúc đó \( f(x) \) như thế nào, có thỏa mãn yêu cầu bài toán hay không.
  • Khi \( a\ne 0 \), thì \( f(x)>0 \) với mọi \( x\in \mathbb{R} \) tương đương với \[\begin{cases} a<0\\ \Delta \le 0

    \end{cases}\]

Ví dụ 1. Tìm \(m\) để hàm số \(f(x)=3 x^{2}+ x+m+1>0\) với mọi \(x\in \mathbb{R}\).

Hướng dẫn. Hàm số \(f(x)=3 x^{2}+ x+m+1>0\) với mọi \(x\in \mathbb{R}\) khi và chỉ khi \[\begin{cases} a=3>0\\ \Delta =-12m-11<0

\end{cases} \] Giải hệ này, từ đó tìm được đáp số \( m<\frac{-11}{12} \).

Phương trình bậc hai (ẩn $x$) là phương trình có dạng $$ax^2+bx=0$$ trong đó $a\ne 0$.

Cách giải phương trình bậc 2. Chúng ta tính đại lượng sau (đặt là $\Delta$) $$\Delta=b^2-4ac$$ Khi đó, tùy vào giá trị dương, âm, bằng không của $\Delta$ mà chúng ta có kết luận về nghiệm của phương trình bậc 2.

  • $\Delta<0$: Phương trình vô nghiệm;
  • $\Delta=0$: Phương trình có một nghiệm $ x=\frac{-b}{2a}$, đôi khi ta còn gọi là nghiệm kép;
  • $\Delta>0$: Phương trình có hai nghiệm (phân biệt), đặt là $ x_1,x_2$ được tính bởi $$ x_1=\frac{-b-\sqrt{\Delta}}{2a}, x_2=\frac{-b+\sqrt{\Delta}}{2a}. $$

Xem thêm:

  • Giải và biện luận phương trình ax+b=0
  • Giải và biện luận phương trình bậc 2

Ví dụ 1. Giải phương trình $x^2-4x-6=0$

Chúng ta có các hệ số $a=1,b=-4,c=-6$ nên tính được $$ \Delta=(-4)^2-4\cdot 1\cdot (-6)=40 $$ Vì $ 40>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-4)+\sqrt{40}}{2}$ và $ \frac{-(-4)-\sqrt{40}}{2}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$.

Ví dụ 2. Giải phương trình $x^2-3x+6=0$

Chúng ta có các hệ số $a=1,b=3,c=6$ nên tính được $$ \Delta=3^2-4\cdot 1\cdot 6=-15 $$ Vì $ -15<0$ nên phương trình vô nghiệm.

Ví dụ 3. Giải phương trình $x^2-2x+1=0$

Chúng ta có các hệ số $a=1,b=-2,c=1$ nên tính được $$ \Delta=(-2)^2-4\cdot 1\cdot 1=0 $$ nên phương trình có một nghiệm là $x=\frac{-(-2)}{2}=1$.

Lưu ý, nếu hệ số $b$ chẵn, tức là có dạng $b=2b’$ thì có thể tính $\Delta’=b’^2-ac$ thay cho $\Delta$. Lúc đó, công thức nghiệm là $\frac{-b’\pm\sqrt{\Delta’}}{a}$.

Ví dụ 4. Giải phương trình $x^2-4x-6=0$

Chúng ta có các hệ số $a=1,b=-4,c=-6$. Nhận thấy $b=2\cdot(-2)$ nên tính $$ \Delta’=(-2)^2-\cdot 1\cdot (-6)=10 $$ Vì $ 10>0$ nên phương trình có hai nghiệm phân biệt $ \frac{-(-2)+\sqrt{10}}{1}$ và $ \frac{-(-2)-\sqrt{10}}{1}$. Rút gọn hai nghiệm này được $ 2+\sqrt{10}$ và $ 2-\sqrt{10}$, chính là hai nghiệm ở ví dụ 1.

2. Phương trình bậc hai có nghiệm khi nào?

Như vậy, phương trình bậc hai có nghiệm khi và chỉ khi $$\Delta \geqslant 0$$

Lúc đó, chúng ta có định lý Viète như sau $$ \begin{cases} x_1+x_2=\frac{-b}{a}\\ x_1x_2=\frac{c}{a} \end{cases} $$

Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có nghiệm $$x^2-3x+m-5=0$$ Phương trình đã cho có nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) \geqslant 0\\ \Leftrightarrow & 29-4m \geqslant 0\\ \Leftrightarrow & m \leqslant \frac{29}{4} \end{align}

3. Phương trình bậc hai có 2 nghiệm (phân biệt) khi nào?

Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta >0.$$

Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho có 2 nghiệm phân biệt khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) > 0\\ \Leftrightarrow & 29-4m > 0\\ \Leftrightarrow & m <\frac{29}{4} \end{align}

4. Phương trình bậc hai vô nghiệm khi nào?

Phương trình bậc hai có 2 nghiệm (phân biệt) khi và chỉ khi $$\Delta <0.$$

Ví dụ. Tìm điều kiện của tham số $m$ để phương trình sau có 2 nghiệm phân biệt $$x^2-3x+m-5=0$$ Phương trình đã cho vô nghiệm khi và chỉ khi \begin{align}&\Delta=(-3)^2-4(m-5) < 0\\ \Leftrightarrow & 29-4m < 0\\ \Leftrightarrow & m >\frac{29}{4} \end{align}

5. Phương trình bậc hai có 2 nghiệm dương khi nào?

Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) dương khi và chỉ khi $$ \begin{cases} \Delta >0\\
x_1+x_2=\frac{-b}{a}>0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

6. Phương trình bậc hai có 2 nghiệm âm khi nào?

Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) âm khi và chỉ khi $$ \begin{cases} \Delta >0\\
x_1+x_2=\frac{-b}{a}<0\\ x_1 \cdot x_2 =\frac{c}{a}>0 \end{cases} $$

7. Phương trình bậc hai có hai nghiệm trái dấu?

Phương trình bậc hai $ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) trái dấu khi và chỉ khi $$  x_1 \cdot x_2 =\frac{c}{a}<0 $$ hoặc đơn giản hơn là $$ac<0.$$

8. Phương trình bậc hai có hai nghiệm lớn hơn một số, nhỏ hơn một số cho trước (định lý đảo)

Phương trình bậc hai $f(x)=ax^2+bx=0$ với $a\ne 0$ có hai nghiệm (phân biệt) $ x_1,x_2$ (giả sử $ x_1<x_2$) và thỏa mãn yêu cầu

  • $ x_1<\alpha <x_2$: điều kiện cần và đủ là $ a\cdot f(\alpha) <0$
  • $ x_1< x_2<\alpha $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} <\alpha
    \end{cases}$
  • $ \alpha <x_1< x_2 $: điều kiện cần và đủ là $ \begin{cases} \Delta >0\\ a\cdot f(\alpha) >0\\ \frac{x_1+x_2}{2} >\alpha \end{cases}$

Mời các em xem lại công thức nghiệm của phương trình bậc hai:

Các em nhớ nhấn SUBCRIBE (ĐĂNG KÍ) trong youtube để nhận thông báo khi có video bài học mới nhé!

Cho phương trình \(ax^2+bx+c=0\) với \(a\ne0.\)

Hệ thức Vi-ét:

Nếu phương trình có hai nghiệm \(x_1, x_2\) thì \[\begin{cases}S=x_1+x_2=-\dfrac{b}{a} \\ P=x_1.x_2=\dfrac{c}{a}\end{cases}\]

(ta có thể dùng công thức nghiệm của phương trình bậc hai để chứng minh hệ thức này)

Điều kiện để có nghiệm dương, âm, trái dấu

  • Phương trình có hai nghiệm phân biệt trái dấu: \[x_1x_2<0\Leftrightarrow ac<0\] (không cần điều kiện \(\Delta >0\), bởi vì khi \(ac<0\) thì \(b^2-4ac>0\)). Chú ý, ta có thể dùng \(P<0 \Leftrightarrow \dfrac{c}{a}<0.\) Nhớ rằng \(\dfrac{c}{a}<0 \Leftrightarrow a.c<0.\)
  • Phương trình có hai nghiệm dương phân biệt: \[0<x_1<x_2\Leftrightarrow\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\]
  • Phương trình có hai nghiệm âm phân biệt: \[x_1<x_2<0\Leftrightarrow\begin{cases}\Delta>0\\S<0\\P>0\end{cases}\]
  • Phương trình có hai nghiệm phân biệt cùng dấu : \[\Leftrightarrow\begin{cases}\Delta>0\\P>0\end{cases}\]

Nếu chỉ yêu cầu hai nghiệm mà không cần phân biệt thì ta thay bằng \(\Delta \ge 0\).

Ví dụ 1. Tìm \(m\) để phương trình \(x^2-5mx-3m+2=0\) có hai nghiệm trái dấu.

Giải. Phương trình có hai nghiệm trái dấu khi và chỉ khi \(1.(-3m+2)<0 \Leftrightarrow m>\dfrac{2}{3}.\)

Ví dụ 2. Tìm \(m\) để phương trình \(x^2-x+2(m-1)=0\) có hai nghiệm dương phân biệt.

Giải. Phương trình có hai nghiệm dương phân biệt khi và chỉ khi \(\begin{cases} \Delta > 0 \\ S>0 \\ P>0\end{cases} \Leftrightarrow \begin{cases}1-8(m-1)>0 \\ 1>0 \\ 2(m-1)>0\end{cases}\)

\(\Leftrightarrow \begin{cases}m<\dfrac{9}{8} \\ m>1\end{cases} \Leftrightarrow 1<m<\dfrac{9}{8}.\)

Ví dụ 3. Tìm \(m\) để phương trình \(4x^2+2x+m-1=0\) có hai nghiệm âm phân biệt.
Giải. Phương trình có hai nghiệm âm phân biệt khi và chỉ khi \(\begin{cases} \Delta' > 0 \\ S<0 \\ P>0\end{cases} \Leftrightarrow \begin{cases}1-4(m-1)>0 \\ -\dfrac{2}{4}<0 \\ \dfrac{m-1}{4}>0\end{cases}\)

\(\Leftrightarrow \begin{cases}m<\dfrac{5}{4} \\ m>1\end{cases} \Leftrightarrow 1<m<\dfrac{5}{4}.\)

Ví dụ 4. Tìm \(m\) để phương trình \((m^2+1)x-2(m+1)x+2m-1=0\) có hai nghiệm trái dấu.
Giải. Phương trình có hai nghiệm trái dấu khi và chỉ khi \(a.c<0\) \((m^2+1)(2m-1)<0 \Leftrightarrow 2m-1<0\) (vì \(m^2+1>0 \; \forall m\)).

\(\Leftrightarrow m<\dfrac{1}{2}\)

Các khác: Phương trình có hai nghiệm trái dấu khi và chỉ khi \(P<0 \Leftrightarrow \dfrac{2m-1}{m^2+1}<0 \Leftrightarrow 2m-1<0\) (vì \(m^2+1>0 \; \forall m\)).

\(\Leftrightarrow m<\dfrac{1}{2}.\)