How many ways letter Organise can be arranged such that all vowels are come together?

This section covers permutations and combinations.

Arranging Objects

The number of ways of arranging n unlike objects in a line is n! (pronounced ‘n factorial’). n! = n × (n – 1) × (n – 2) ×…× 3 × 2 × 1

Example

How many different ways can the letters P, Q, R, S be arranged?

The answer is 4! = 24.

This is because there are four spaces to be filled: _, _, _, _

The first space can be filled by any one of the four letters. The second space can be filled by any of the remaining 3 letters. The third space can be filled by any of the 2 remaining letters and the final space must be filled by the one remaining letter. The total number of possible arrangements is therefore 4 × 3 × 2 × 1 = 4!

  • The number of ways of arranging n objects, of which p of one type are alike, q of a second type are alike, r of a third type are alike, etc is:

n!        .
p! q! r! …

Example

In how many ways can the letters in the word: STATISTICS be arranged?

There are 3 S’s, 2 I’s and 3 T’s in this word, therefore, the number of ways of arranging the letters are:

10!=50 400
3! 2! 3!

Rings and Roundabouts

  • The number of ways of arranging n unlike objects in a ring when clockwise and anticlockwise arrangements are different is (n – 1)!

When clockwise and anti-clockwise arrangements are the same, the number of ways is ½ (n – 1)!

Example

Ten people go to a party. How many different ways can they be seated?

Anti-clockwise and clockwise arrangements are the same. Therefore, the total number of ways is ½ (10-1)! = 181 440

Combinations

The number of ways of selecting r objects from n unlike objects is:

How many ways letter Organise can be arranged such that all vowels are come together?

Example

There are 10 balls in a bag numbered from 1 to 10. Three balls are selected at random. How many different ways are there of selecting the three balls?

10C3 =10!=10 × 9 × 8= 120
             3! (10 – 3)!3 × 2 × 1

Permutations

A permutation is an ordered arrangement.

  • The number of ordered arrangements of r objects taken from n unlike objects is:

nPr =       n!       .
          (n – r)!

Example

In the Match of the Day’s goal of the month competition, you had to pick the top 3 goals out of 10. Since the order is important, it is the permutation formula which we use.

10P3 =10!
            7!

= 720

There are therefore 720 different ways of picking the top three goals.

Probability

The above facts can be used to help solve problems in probability.

Example

In the National Lottery, 6 numbers are chosen from 49. You win if the 6 balls you pick match the six balls selected by the machine. What is the probability of winning the National Lottery?

The number of ways of choosing 6 numbers from 49 is 49C6 = 13 983 816 .

Therefore the probability of winning the lottery is 1/13983816 = 0.000 000 071 5 (3sf), which is about a 1 in 14 million chance.

  • Permutation and Combination - important notes
  • Permutation and Combination - General Questions

1. 

In how many different ways can the letters of the word 'LEADING' be arranged in such a way that the vowels always come together?


2. 

From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at least 3 men are there on the committee. In how many ways can it be done?


3. 

In how many different ways can the letters of the word 'CORPORATION' be arranged so that the vowels always come together?


4. 

In how many ways can the letters of the word 'LEADER' be arranged?


5. 

Out of 7 consonants and 4 vowels, how many words of 3 consonants and 2 vowels can be formed?


In how many different ways can the letters of the word TRAINER be arranged so that the vowels always come together?A. 1440B. 120C. 720D. 360

Answer

Verified

Hint: To solve this problem we have to know about the concept of permutations and combinations. But here a simple concept is used. In any given word, the number of ways we can arrange the word by jumbling the letters is the number of letters present in the word factorial. Here factorial of any number is the product of that number and all the numbers less than that number till 1.
$ \Rightarrow n! = n(n - 1)(n - 2).......1$

Complete step by step answer:
Given the word TRAINER, we have to arrange the letters of the word in such a way that all the vowels in the word TRAINER should be together.
The number of vowels in the word TRAINER are = 3 vowels.
The three vowels in the word TRAINER are A, I, and E.
Now these three vowels should always be together and these vowels can be in any order, but they should be together.
Here the three vowels AIE can be arranged in 3 factorial ways, as there are 3 vowels, as given below:
The number of ways the 3 vowels AIE can be arranged is = $3!$
Now arranging the consonants other than the vowels is given by:
As the left out letters in the word TRAINER are TRNR.
The total no. of consonants left out are = 4 consonants.
Now these 4 consonants can be arranged in the following way:
As in the 4 letters TRNR, the letter R is repeated for 2 times, hence the letters TRNR can be arranged in :
$ \Rightarrow \dfrac{{4!}}{{2!}}$
But the letters TRNR are arranged along with the vowels A,I,E, which should be together always but in any order.
Hence we consider the three vowels as a single letter, now TRNR along with AIE can be arranged in:
$ \Rightarrow \dfrac{{5!}}{{2!}}$
But here the vowels can be arranged in $3!$ as already discussed before.
Thus the word TRAINER can be arranged so that the vowels always come together are given below:
$ \Rightarrow \dfrac{{5!}}{{2!}} \times 3! = \dfrac{{120 \times 6}}{2}$
$ \Rightarrow 360$

The number of ways the word TRAINER can be arranged so that the vowels always come together are 360.

Note: Here while solving such kind of problems if there is any word of $n$ letters and a letter is repeating for $r$ times in it, then it can be arranged in $\dfrac{{n!}}{{r!}}$ number of ways. If there are many letters repeating for a distinct number of times, such as a word of $n$ letters and ${r_1}$ repeated items, ${r_2}$ repeated items,…….${r_k}$ repeated items, then it is arranged in $\dfrac{{n!}}{{{r_1}!{r_2}!......{r_k}!}}$ number of ways.

How many ways a letter can be arranged so that vowels come together?

Required number of ways = (120 x 6) = 720.

How many ways can the letters be arranged so that all the vowels come together word is impossible?

In how many ways can the letters of the word IMPOSSIBLE be arranged so that all the vowels come together? Now count the ways the vowels in the super letter can be arranged, since there are 4 and 1 2-letter(I'i) repeat the super letter of vowels would be arranged in 12 ways i.e., (4!/2!) = (7!/2! × 4!/2!)

How many ways word arrange can be arranged in which vowels are not together?

Hence, the answer is 36.

How many ways rectangle can be arranged so vowels are always together?

Total Ways = 3 * 7!