Các bài toán chứng minh bằng phương pháp quy nạp năm 2024

Với \(n \in N*\), ta xét các mệnh đề: P: \(''{7^n} + 5\) chia hết cho 2”; Q: “\({7^n} + 5\) chia hết cho 3” và R: “\({7^n} + 5\) chia hết cho 6”. Số mệnh đề đúng trong các mệnh đề trên là:

  • A 3
  • B 0
  • C 1
  • D 2

Đáp án: A

Phương pháp giải:

Bằng quy nạp toán học ta chứng minh được \({7^n} + 5\) chia hết cho 6.

Lời giải chi tiết:

Bằng quy nạp toán học ta chứng minh được \({7^n} + 5\) chia hết cho 6.

Thật vậy, với n = 1 ta có: \({7^1} + 5 = 12\,\, \vdots \,\,6\)

Giả sử mệnh đề đúng với n = k, nghĩa là \({7^k} + 5\) chia hết cho 6, ta chứng minh mệnh đề cũng đúng với n = k + 1, nghĩa là phải chứng minh \({7^{k + 1}} + 5\) chia hết cho 6.

Ta có: \({7^{k + 1}} + 5 = 7\left( {{7^k} + 5} \right) - 30\)

Theo giả thiết quy nạp ta có \({7^k} + 5\) chia hết cho 6, và 30 chia hết cho 6 nên \(7\left( {{7^k} + 5} \right) - 30\) cũng chia hết cho 6.

Do đó mệnh đề đúng với n = k + 1.

Vậy \({7^n} + 5\) chi hết cho 6 với mọi \(n \in N*\).

Mọi số chia hết cho 6 đều chia hết cho 2 và chia hết cho 3. Do đó cả 3 mệnh đề đều đúng.

Chọn A.

Đáp án - Lời giải

TÓM TẮT: Rút gọn thuộc tính là bài toán quan trọng trong bước tiền xử lý dữ liệu của quá trình khai phá dữ liệu và khám phá tri thức. Trong mấy năm gần đây, các nhà nghiên cứu đề xuất các phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ (Fuzzy Rough Set FRS) nhằm nâng cao độ chính xác mô hình phân lớp. Tuy nhiên, số lượng thuộc tính thu được theo tiếp cận FRS chưa tối ưu do ràng buộc giữa các đối tượng trong bảng quyết định chưa được xem xét đầy đủ. Trong bài báo này, chúng tôi đề xuất phương pháp rút gọn thuộc tính trực tiếp trên bảng quyết định gốc theo tiếp cận tập thô mờ trực cảm (Intuitionistic Fuzzy Rough Set IFRS) dựa trên các đề xuất mới về hàm thành viên và không thành viên. Kết quả thử nghiệm trên các bộ dữ liệu mẫu cho thấy, số lượng thuộc tính của tập rút gọn theo phương pháp đề xuất giảm đáng kể so với các phương pháp FRS và một số phương pháp IFRS khác.

Bài tập toán cao cấp.Tập 3,Phép giải tích nhiều biến số. DSpace/Manakin Repository. ...

Trong hệ thống du lịch thông minh, lập lộ trình tự động là một trong những chức năng phức tạp nhưng rất quan trọng và cần thiết cho du khách trước và trong hành trình thăm quan của mình. Chức năng này không chỉ yêu cầu tạo ra phương án lộ trình phù hợp với điều kiện của du khách một cách nhanh chóng, mà còn phải tối ưu về thời gian thăm quan và hiệu quả kinh tế. Trong bài báo này, chúng tôi trình bày một thuật toán lập lộ trình tự động mới dựa trên ý tưởng của bài toán lập lịch TSP (Traveling Salesman Problem) và bổ sung tham số về thời gian du lịch hợp lý, được gọi là TPA (Travel Planning Algorithm). Thuật toán TPA được cài đặt trong hệ thống du lịch thông minh đa nền tảng của tỉnh Thái Nguyên. Dựa vào điểm du lịch được gợi ý trong quá trình lựa chọn điểm thăm quan của du khách, thuật toán TPA hoạt động ổn định và lập được lộ trình du lịch tốt hơn so với chức năng lập lộ trình trong hệ thống du lịch thông minh của TripHunter và Tập đoàn bưu chính viễn thông Việt Nam (VNPT).

Xử lý phổ hay hiệu chỉnh phổ là quá trình loại bỏ hoặc làm giảm bớt các sai số do ảnh hưởng của điều kiện khí quyển, nguồn sáng chiếu và bề mặt địa hình. Có hai loại hiệu chỉnh phổ: hiệu chỉnh tuyệt đối và hiệu chỉnh tương đối. Trong bài báo nhóm nghiên cứu tập trung tìm hiểu các phương pháp hiệu chỉnh phổ tương đối từ đó xây dựng phương pháp hiệu chỉnh phổ trên ảnh vệ tinh VNREDSat-1. Phương pháp được lựa chọn bao gồm nắn chỉnh hình học ảnh, lựa chọn các đối tượng bất biến giả định, xác định tham số chuẩn hóa. Kết quả thực nghiệm được kiểm định qua các phép phân tích thống kê giá trị độ sáng của pixel trên ảnh trước và sau chuẩn hóa phổ. Độ chính xác của kết quả thể hiện phương pháp lựa chọn là hợp lý.

Bài viết Lý thuyết, bài tập Phương pháp quy nạp toán học với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Lý thuyết, bài tập Phương pháp quy nạp toán học.

Lý thuyết, bài tập Phương pháp quy nạp toán học hay, chi tiết

A. Phương pháp giải & Ví dụ

Quảng cáo

Giả sử cần chứng minh đẳng thức P(n) = Q(n) (hoặc P(n) > Q(n)) đúng với n ≥ n0, n0 ∈ N* ta thực hiện các bước sau:

Bước 1: Tính P(n0),Q(n0) rồi chứng minh P(n0 )= Q(n0)

Bước 2: Giả sử P(k) = Q(k) ; k ≥ n0, k ∈ N*, ta cần chứng minh P(k+1) = Q(k+1).

Ví dụ minh họa

Bài 1: Chứng mình với mọi số tự nhiên n ≥ 1 ta luôn có: 1+2+3+...+n= (n(n+1))/2

Đặt P(n) = 1+2+3+...+n : tổng n số tự nhiên đầu tiên :

Ta cần chứng minh P(n) = Q(n) n ≥ 1 ,n ∈ N*.

Bước 1: Với n = 1 ta có P(1) = 1, Q(1) = 1

⇒ P(1) = Q(1) = 1đúng vớí n = 1.

Bước 2: Giả sử P(k0 = Q(k) với k ≥ 1 ,k ∈ N*. tức là:

Ta cần chứng minh P(k+1) = Q(k+1), tức là:

Thật vậy:

Vậy đẳng thức đã cho đúng với mọi n ≥ 1.

Quảng cáo

Bài 2:Chứng minh với mọi số tự nhiên n ≥ 1 ta luôn có: 1+3+5+⋯+2n-1=n2

♦ Với n = 1 ta có VT =VP = 1

Suy ra đẳng thức đã cho đúng với n = 1.

♦ Giả sử đẳng thức đã cho đúng với n = k với k ≥ 1 ,k ∈ N*. tức là:

1 + 3 + 5 + ... + 2k - 1 = k2 (1)

Ta cần chứng minh đẳng thức đã cho đúng với n = k+1, tức là:

1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = (k + 1)2 (2)

Thật vậy: VT(2) = 1 + 3 + 5 + ... + (2k - 1) + (2k + 1)

\= k2 + (2k + 1) = (k + 1)2 = VP(2)

Vậy đẳng thức đã cho đúng với mọi n = 1.

Bài 3: Chứng minh rằng vớí ∀n ≥ 1, ta có bất đẳng thức:

♦ Với n = 1 ta có đẳng thức đã cho trở thành :1/2 < 1/√3 ⇒ 2 > √3 đúng.

⇒ Đẳng thức đã cho đúng với n = 1.

♦ Giả sử đẳng thức đã cho đúng với n = k ≥ 1 , tức là :

Ta phải chứng minh đẳng thức đã cho đúng với n = k+1, tức là :

Thật vậy, ta có :

Ta chứng minh:

⇔ (2k+1)(2k+3) < (2k+2)2

⇒ 3 > 1 (luôn đúng)

Vậy đẳng thức đã cho đúng với mọi số tự nhiên n ≥ 1.

Chú ý: Vậy Phương pháp quy nạp toán học còn được ứng dụng nhiều trong số học và hình học

Quảng cáo

B. Bài tập vận dụng

Bài 1: Chứng minh rằng với mọi số tự nhiên n ≥ 1 , ta luôn có

Lời giải:

Bước 1: Với n = 1 ta có: VT = 1 ; VP = 1 ⇒ VT=VP

⇒ Đẳng thức đã cho đúng vớí n = 1.

Bước 2: Giả sử đẳng thức đã cho đúng với n = k ≥ 1, tức là

Ta sẽ chứng minh đẳng thức đã cho đúng với n = k+1, tức là cần chứng minh

Thật vậy:

⇒ (1) đúng đẳng thức đã cho đúng với mọi n ≥ 1.

Bài 2: Chứng minh các đẳng thức sau:

Lời giải:

Bài 3: Chứng minh rằng với mọi n ≥ 1 ta có bất đẳng thức:

|sinnx| ≤ k|sinx| ∀x ∈ I

Lời giải:

Làm tương tự câu 1. Với n=1 đẳng thức đã cho đúng

Gợi ý:

* Với n=1 ta có:VT = |sin1.α|=1.|sinα| =VP nên đẳng thức đã cho đúng.

* Giả sử đẳng thức đã cho đúng với n = k+1, tức là :|sinkα| ≤ k|sinα| (1)

Ta phải chứng minh đẳng thức đã cho đúng với n = k+1,tức là :

|sin⁡(k+1)α| ≤ (k+1)|sinα| (2)

Thật vậy:

sin⁡(k+1)α=sinkα.cosα+coskα.sinαsinkαcosα+coskαsinαsinkα+sinα ≤ ksinα+sinα ≤ (k+1)sinα

Vậy đẳng thức đã cho đúng với n=k+1, nên đẳng thức đã cho cũng đúng với mọi số nguyên dương n.

Bài 4: Chứng minh rằng với mọi số tự nhiên n ≥ 1 thì A(n)=7n+3n-1 luôn chia hết cho 9

Lời giải:

* Với n=1 ⇒ A(1)=71+3.1-1=9 ⇒ A(1)chia hết cho 9

* Giả sử A(k)chia hết cho 9 ∀k ≥ 1, ta chứng minh A(k+1)chia hết cho 9

Thật vậy:A(k+1)=7k+1+3(k+1)1=7.7k+21k-7-18k+9 ⇒ A(k+1)=7A(k)-9(2k-1)

Vì A(k) chia hết cho 9 và 9(2k-1) chia ết cho 9 nên A(2k+1) chia hết cho 9

Vậy A(n) chia hết cho 9 với mọi số tự nhiên n ≥ 1.

Quảng cáo

Bài 5: Chứng minh rằng tổng các trong một n – giác lồi (n ≥ 1) bằng (n-2)180º.

Lời giải:

* Với n = 3 ta có tổng ba góc trong tam giác bằng 180º

* Giả sử công thức đúng cho tất cả k-giác, với k < n, ta phải chứng minh mệnh đề cũng đúng cho n-giác. Ta có thể chia n-giác bằng một đường chéo thành ra hai đa giác. Nếu số cạnh của một đa giác là k+1, thì số cạnh của đa giác kia là n – k + 1, hơn nữa cả hai số này đều nhỏ hơn n. Theo giả thiết quy nạp tổng các góc của hai đa giác này lần lượt là. (k-1)180ºvà (n-k-1)180º

Tổng các góc của n-giác bằng tổng các góc của hai đa giác trên, nghĩa là (k-1+n-k-1)180º=(n-2)180º.

Suy ra mệnh đề đúng với mọi n ≥ 3..

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

  • Trắc nghiệm phương pháp quy nạp toán học
  • Dạng 2: Xác định số hạng của dãy số
  • Trắc nghiệm xác định số hạng của dãy số
  • Dạng 3: Tính đơn điệu, tính bị chặn của dãy số
  • Trắc nghiệm tính đơn điệu, tính bị chặn của dãy số
  • Dạng 4: Phương pháp giải bài tập Cấp số cộng
  • Các bài toán chứng minh bằng phương pháp quy nạp năm 2024
    Gói luyện thi online hơn 1 triệu câu hỏi đầy đủ các lớp, các môn, có đáp án chi tiết. Chỉ từ 200k!

Săn SALE shopee Tết:

  • Đồ dùng học tập giá rẻ
  • Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
  • Tsubaki 199k/3 chai
  • L'Oreal mua 1 tặng 3

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Các bài toán chứng minh bằng phương pháp quy nạp năm 2024

Các bài toán chứng minh bằng phương pháp quy nạp năm 2024

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.