Tứ giác toàn phần là gì

Tứ giác toàn phần là gì


Chúng ta thường làm việc với tứ giác ABCD với E là giao của hai cạnh bên AB và CD, F là giao của hai cạnh bên AD, BC. Thì chúng ta sẽ có các đường thẳng guass trung điểm hai đường chéo AC, BD và trung điểm EF thẳng hàng, đường thẳng steiner là đường thẳng chứa trực tâm của tam giác FAB, FCD, EAD, EBC thẳng hàng và vuông với đường thẳng guass của tứ giác, ngoài ra ta còn các định lý Miquel, đường tròn Miquel cho tứ giác ABCD.

Và một điều thú vị là nếu ta thay hai cạnh bên AD, BC là hai đường chéo thì ta lại có những tính chất như tứ giác ABCD có AC, BD là hai đường chéo.

Tứ giác toàn phần là gì

Những tính chất nhìn rất mới lạ do hai đường chéo lại là hai cạnh bên của tứ giác ! Vì thế trong một số đề thi chẳng hạn China TST 1992 dùng tính chất đường tròn (ECB) cắt đường tròn (EAD) làm đề thi. Và ta sẽ xét đề thi Olympic toán dành cho nữ sinh ở châu Âu năm 2014

Đề: Cho D, E là các điểm trên AB, AC của tam giác ABC sao cho DB=BC=CE. CD và BE cắt nhau tại F. Chứng minh rằng tâm nội tiếp của tam giác ABC, DEF và trung điểm M của cung lớn BC của đường tròn ngoại tiếp tam giác ABC thẳng hàng.

Tứ giác toàn phần là gì

Lời giải:

Để ý rằng I cũng trực tâm tam giác FBC.

Xét tứ giác DFBC có DC, BE là hai cạnh bên cắt nhau tại F nên đường thẳng steiner của tứ giác là HI (H là trực tâm tam giác DEF), sẽ là trục đẳng phương của hai đường tròn đường kính là hai đường chéo BD, CE. Mặt khác nếu M là trung điểm cung BC thì M cũng sẽ cùng phương tích với hai đường tròn đường kính BD và CE.

Vậy ta có đpcm.

Ta có thể mở rộng bài toán như sau: Cho tam giác ABC cố định. E, F lần lượt di chuyển trên AC, AB sao cho CE=BF. BE cắt CF tại D. H, K là trực tâm tam giác DEF, DBC. Khi đó HK luôn đi qua một điểm cố định khi E, F di chuyển .

Bài này được tổng quá và phát biểu dưới dạng là tìm yếu tố cố định có phần thú vị hơn. Rõ ràng ta phải đoán nhận điểm cố định vì đường tròn ngoại tiếp tam giác ABC không xuất hiện trong đề bài.

Bài viết hôm nay, THPT Sóc Trăng sẽ giới thiệu đến quý bạn đọc định lí Miquel, tính chất liên quan và một số bài tập áp dụng. Hãy dành thời gian chia sẻ để nắm chắc hơn về chuyên đề này để áp dụng giải một số bài toán liên quan cực nhanh bạn nhé !

I. ĐỊNH LÍ MIQUEL LÀ GÌ ?

Related Articles

  • Tứ giác toàn phần là gì

    Viết đoạn văn kể cho các bạn nghe về môn thể thao mà em thích lớp 3 hay nhất (40 Mẫu)

    4 giờ ago

  • Tứ giác toàn phần là gì

    Viết 4-5 câu về chiếc bút chì dựa vào hình vẽ và từ ngữ gợi ý (8 Mẫu)

    4 giờ ago

  • Tứ giác toàn phần là gì

    Viết một đoạn văn ngắn tả người mẹ cấy lúa giữa trưa tháng 6 nóng bức (12 Mẫu)

    13 giờ ago

  • Tứ giác toàn phần là gì

    Viết đoạn văn ý nghĩa của những việc làm thiện nguyện trong cuộc sống hay nhất (9 Mẫu)

    17 giờ ago

Định lí Miquel là định lí được đặt theo tên Auguste Mique nói về ba đường tròn mỗi đường tròn đi qua 2 điểm trên hai cạnh của tam giác và một đỉnh chung của hai cạnh đó.

Bạn đang xem: Định lí Miquel, các tính chất liên quan và một số bài tập áp dụng

Định lí:

Cho tam giác ABC, với các điểm A´, B´ và C´ lần lượt trên các cạnh BC, AC, và AB khi đó đường tròn ngoại tiếp các tam giác AB´C´, A´BC´, và A´BC’ sẽ đồng quy tại điểm M gọi là điểm Miquel

– Nếu A’, B’,C’ lần lượt là trung điểm các cạnh BC, AC và AB thì điểm Miquel là tâm đường tròn ngoại tiếp tam giác ABC

– Nếu A’, B’, C’ là lần lượt là chân hình chiếu của A, B, C trên BC, AC , AB thì điểm Miquel là trực tâm của tam giác ABC

Tứ giác toàn phần là gì

II. TÍNH CHẤT CỦA ĐỊNH LÍ MIQUEL 

Định lí Miquel có các tính chất sau:

Tính chất 1. Cho tứ giác toàn phần ABCDEF. Khi đó đường tròn ngoại tiếp các tam giác ABF, DCF, BCE, ADE đồng quy.

Tính chất 2. Tâm của các đường tròn ngoại tiếp các tam giác CBE, CDF, ADE, ABF và điểm Miquel M cùng thuộc một đường tròn. Đường tròn này được gọi là đường tròn Miquel của tứ giác toàn phần.

Tính chất 3. Chân các đường vuông góc hạ từ điểm Miquel M lên các đường thẳng AB, BC, CD, DA cùng nằm trên một đường thẳng – đường thẳng Simson.

Tính chất 4. Điểm Miquel M là tâm vị tự quay của tứ giác ABCD, nghĩa là tồn tại các phép vị tự quay tâm M biến AB thành CD, AD thành BC.

Tính chất 5 (Định lí Emelyanov). Gọi X = AC ∩ BD,Y = BD ∩ EF, Z = EF ∩ AC. M là điểm Miquel của tứ giác toàn phần ABCDEF. Khi đó M nằm trên đường tròn Euler của tam giác XYZ.

Tính chất 6 (Định lí Mannheim). Cho tam giác ABC. Gọi D, E, F lần lượt là các điểm nằm trên BC, CA, AB không trùng với A, B, C.M là điểm Miquel của D, E, F ứng với tam giác ABC.P, Q, R lần lượt là các điểm nằm trên đường tròn ngoại tiếp các tam giác DEF, BFD, CDE ( các điểm P.Q.R không trùng với M).

Khi đó:

a. M, P, Q, R thẳng hàng khi và chỉ khi AP, BQ, CR đôi một song song.
b. M, P, Q, R đồng viên khi và chỉ khi AP, BQ, CR đồng quy

Tính chất 7. Cho tam giác ABC nội tiếp đường tròn (O). H là một điểm bất kì trong tam giác. Một đường thẳng bất kì qua H cắt AC, BA lần lượt tại M, N. Trên BC lấy các điểm P, Q sao cho MP k BH, NQ k CH. NQ cắt MP tại R.NQ cắt AC tại X. Chứng minh rằng NXCBAQ, CQRMPX có chung điểm Miquel.

Tính chất 8. Cho tứ giác toàn phần ABCDEF. M là điểm Miquel của tứ giác toàn phần. Các tiếp tuyến tại M của các đường tròn (FAB),(EBC),(DCF),(EAD) theo thứ tự cắt các đường thẳng AB, BC, CD, DA tại X,Y, Z, W.
a. Hai đường tròn (FWY),(EXZ) tiếp xúc với nhau tại M.
b. Trong trường hợp tứ giác ABCD không nội tiếp, thì X,Y, Z, W đồng viên.
c. Trong trường hợp tứ giác ABCD nội tiếp, thì X,Y, Z, W thẳng hàng.

III. ỨNG DỤNG ĐỊNH LÍ MIQUEL GIẢI BÀI TẬP

1. Bài tập có lời giải

Bài 1: Cho tam giác ABC. Gọi P.Q là các điểm bất kì trên cạnh BC sao cho BP = CQ và P nằm giữa B, Q. Đường tròn ngoại tiếp tam giác APQ cắt các đoạn AB, AC lần lượt tại E, F.EP, FQ cắt nhau tại T. Hai đường thẳng đi qua trung điểm của BC và song song với AB, AC lần lượt cắt EP, FQ tại X,Y. Chứng Minh rằng đường tròn ngoại tiếp tam giác TXY tiếp xúc với đường tròn ngoại tiếp tam giác APQ.

Lời giải: Gọi M là trung điểm của đoạn BC, S là giao điểm thứ hai của đường thẳng AM với đường tròn ngoại tiếp tam giác APQ.
Do MX // AB nên Góc MXP =góc MXE = góc BEP= góc PSA = góc PSM Suy ra tứ giác MSXP nội tiếp. Do đó S thuộc đường tròn ngoại tiếp tam giác PMX. Tương tự do MY // AC nên Góc MYQ = góc MYF = góc QFC = góc ASQ = góc MSQ

Suy ra tứ giác MSYQ nội tiếp. Do đó S thuộc đường tròn ngoại tiếp tam giác QMY. Từ đây suy ra S thuộc cả hai đường tròn ngoại tiếp các tam giác PMX, QMY, nên theo định lí Miquel thì S thuộc đường tròn ngoại tiếp tam giác TXY.

Do MX k BE, MY k FC, nên suy ra MX/BE =MP/BP =MQ/CQ =MY/FC ⇒MX/MY =BE/CF (1) và BE.BA = BP.BQ = CQ.CP = CF.CA ⇒ BE/CF =AC/AB. (2)
Từ (1) và (2) suy ra MX/MY =AC/AB.
Lại có Góc XMY = góc XMS + góc SMY = góc BAS + góc CAS = góc A.

Do đó ∆ABC ∼ ∆MYX(c.g.c) ⇒ góc ACB = góc QMY = góc QSY =góc MXY = MXS + SXY 
= QPS + SXY 
⇒ góc QSY = góc QPS + SXY 
Từ đây suy ra đường tròn ngoại tiếp tam giác TXY tiếp xúc với đường tròn ngoại tiếp tam giác APQ.

Bài 2: Cho tam giác ABC có điểm D di chuyển trên cạnh BC. Dựng E, F lần lượt trên AC và AB sao cho BF = CD, CE = BD. P à giao điểm thứ hai của hai đường tròn ngoại tiếp các tam giác BDF, CDE. Chứng minh rằng tồn tại điểm Q cố định sao cho độ dài PQ là hằng số.

Lời giải. Gọi I là tâm đường tròn nội tiếp tam giác ABC. G là điểm trên BC sao cho CG = BD.

Nhận thấy: G, E đối xứng với nhau qua IC suy ra IE = IG = IF. Tam giác AEF có I là giao phân giác góc EAF [ và trung trực đoạn EF. Vậy I nằm trên đường tròn ngoại tiếp tam giác AEF.

Theo định lí Miquel ta có đường tròn ngoại tiếp tam giác AEF đi qua điểm P. Gọi Y là giao điểm thứ hai của đường thẳng BI với đường tròn ngoại tiếp tam giác BDF, Z là giao điểm thứ hai của đường thẳng C I với đường tròn ngoại tiếp tam giác CDE.
Ta có
YF = YD, FB = DC, góc YFB  = góc YDC 

Suy ra ∆YFB = ∆YDC ⇒ YB = YC. Chứng minh tương tự ta có ZB = ZC . Vậy Y, Z là giao của trung trực đoạn BC với IB, IC. Suy ra Y, Z cố định. Áp dụng tính chất 6 ta có I,Y, Z, P đồng viên. Vậy P nằm trên đường tròn ngoại tiếp tam giác IYZ cố định. Gọi Q là tâm của đường tròn này, ta có PQ cố định, không phụ thuôc vào vị trí của D.

Bài 3:Cho tứ giác ABCD nội tiếp đường tròn (O) và ABCD không phải là hình thang. Gọi E là giao điểm của AC và BD, P là một điểm
thuộc đường thẳng OE. Đường tròn ngoại tiếp tam giác PAD và PBC cắt nhau tại điểm thứ hai Q.

a. Chứng minh rằng Q thuộc một đường tròn cố định khi P di chuyển.

b. Đường tròn ngoại tiếp tam giác PAB, PCD cắt nhau tại điểm thứ hai R. Chứng minh
rằng đường thẳng QR luôn đi qua một điểm cố định khi P di chuyển.

Lời giải.

a. Gọi M là giao điểm của AD và BC, N là giao điểm của AB và CD. Gọi F là giao điểm của OE và MN. Theo nhận xét trên ta có OF⊥MN và F là điểm Miquel của tứ giác toàn phần ABCDMN. Từ đó ta có tứ giác FDAN nội tiếp.

Theo tính chất phương tích ta có P, Q, M thẳng hàng.

Ta có MF.MN = MA.MD = MQ.MP, suy ra tứ giác PQFN nội tiếp. Do đó góc NQP = góc NFP = 900 . Vậy Q thuộc đường tròn đường kính MNcố định.

b. Tương tự câu a, ta có MR⊥NP tại R. Xét tam giác PMN có các đường cao MR, NQ, PF đồng quy.
Gọi L là giao điểm của QR và MN. Ta có (LF, MN) = −1 , mà M, N, F cố định nên L cố định. Vậy QR luôn đi qua điểm L cố định.

2. Bài tập tự luyện thêm

Bài 1: Cho tam giác ABC nội tiếp đường tròn (O), trực tâm H. Trung tuyến AM cắt (O) lần thứ hai tại N.AH cắt (O) tại K. Các đường
thẳng KN, BC và đường thẳng qua H vuông góc với AN cắt nhau tạo thành tam giác XYZ. Chứng minh rằng (XYZ) tiếp xúc với (O).

Bài 2. Cho tam giác ABC. Một đường tròn Oa qua B, C cắt AC, AB lần lượt tại E, F.BE giao CF tại P. Gọi M là trung điểm của BC, L đối xứng với K qua M. Các đường thẳng PK, QL, BC cắt nhau tạo thành tam giác XYZ. Chứng minh rằng (XYZ) tiếp xúc với (ABC).

Bài 3. Cho tam giác ABC nội tiếp đường tròn (O). Gọi A0 là điểm đối xứng của A qua O. Trung tuyến AM của tam giác ABC cắt BA0 , CA0
lần lượt tại L và K. Các đường thẳng qua L vuông góc với BA0, qua K và vuông góc với CA0 và đường thẳng OM cắt nhau tạo
thành tam giác XYZ. Gọi P là giao của hai tiếp tuyến tại B và C của (O). Chứng minh rằng (AMP) tiếp xúc với (XYZ).

Bài 4. Cho tứ giác lưỡng tâm ABCD có tâm đường tròn ngoại tiếp là O. Gọi E, F lần lượt là giao điểm của AB và CD, AD và BC. Chứng minh rằng tồn tại môt đường tròn tâm O tiếp xúc với bốn đường tròn ngoại tiếp các tam giác EAD, EBC, FAB, FCD.

Bài 5. Cho tam giác ABC nội tiếp đường tròn (O) với trực tâm H. Hai đường thẳng d1 và d2 bất kì vuông góc với nhau và đi qua H.d1 cắt BC, CA, AB lần lượt tại X1,Y1, Z1. GọiA1B1C1 là tam giác tạo bởi các đường thẳng qua X1 và vuông góc với BC, qua Y1 và vuông góc CA, qua Z1 và vuông góc với AB. Tương tự ta xác định được tam giác A2B2C2. Chứng minh rằng đường tròn ngoại tiếp các tam giác A1B1C1 và A2B2C2 tiếp xúc với nhau tại một điểm trên (O).

Vậy là các bạn vừa được tìm hiểu Định lí Miquel, tính chất liên quan và một số bài tập áp dụng. Hi vọng, bài viết đã cung cấp thêm cho bạn nguồn tư liệu cần thiết giúp các bạn dạy và học tốt hơn. Xem thêm chuyên đề về định lí Thales trong không gian nữa bạn nhé !